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Model of correlated evolution
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We introduce a model of biological evolution inspired by the Bak and Snef@®®nhmodel. Microscopic
dynamical rules are modified with respect to the BS model in order to account for predator-prey and competitor
correlations. We perform numerical simulations of the system and compare them with both a mean field
equation and a mean field simulation. The model is in a different universality class of self-organized critical
behavior than the Bak-Sneppen model, and in addition shows a nontrivial fithess probability distribution.
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I. INTRODUCTION involves the species with the lowest fitness, and a secondary
(or induced one, due to changes in the environment caused
Much attention has recently focused upon nonequilibriumby the spontaneous mutation of another species. Without the
systems displaying self-organized criticalitg00, a con- offspring-related definition of fitness it would be difficult to
cept introduced by Bak, Tang, and Wiesenfedli SOC sys- understand why and how primary mutations induce second-
tems appear to be widespread in nature, including sandpilédy ©nes15]. In our model such observations translate into
[1], earthquake$2], creep phenomenis], material fractur- microscopic dynaml_calllrules, alcco(rjdlng to which secondary
= N . ' . mutations are nontrivially correlated to primary ones.
'gnr%vgﬁ]]'[él]u'gng'srsgrcigsvrg”g??omus med[a], interface The paper is organized as follows: in Sec. Il the Bak-

. Sneppen model is reviewed, and a model with correlation
Recently .B’?‘k and SneppeBS) [8.’9] mtrqduced a SOC among evolving species is introduced and motivated. In Sec.
model describing an ecosystem of interacting species evol

) ) > OM1| results from numerical simulations of this model are pre-
ing by mutation and selection, and capable of reproducingented and discussed, and a further model is introduced in

the punctuated equilibrium featurgs0] of evolution as in-  order to check the robustness of its universality class; the

ferred from observations of fossil recoridsl]. The signature  random neighbor version of these models are also numeri-

of this phenomenon is the power law distribution of evolu-cally analyzed. In Sec. IV a mean field solution of the three

tionary avalanches, clearly showing that mutati¢asd ex-  models(BS and the two correlated modgls proposed and

tinction) may be episodic at all scal¢s0,11. compared with numerical simulations. In Sec. V conclusions
It has been debated if changing the microscopic dynamiare drawn.

cal rules in the sandpile model does or does not change the

SOC universality class of the systdit2,13. It is therefore Il. MODEL
'”tefes“”g FO study the robustnes; of BS-type models when In the BS model species are arranged on a lattice, and
the interaction rules between species are changed. interactions are among nearest neighbors. To each species is

In the BS model an ecosystem is representedibipter-  4qgigned a fitness represented by a random numbveith
acting species. Each species is characterized only by its fityyiform probability distribution in[0,1]. Evolution takes
ness. Such fithess is proportional to the average number ‘Eﬂace in the following way: at each time step the species with
offsprings that an individual of the species may have in thehe minimum fitness; is the most likely to mutate. Thus it is
given environmenf14]. This definition also accounts for the selected, and the value of its fitness is redrawn. Together
greater resistance to mutations of the fitter species: mutationgith this, the fitnesses of its nearest neighbors also change at
must propagate over a greater number of individuals to berandom with the same uniform distribution[i6,1]. The BS
come a genetic trait of the species. model does not introduce any correlation between primary

The species which is the most likely to mutate is the oneand secondary mutations except causality: primary mutations
with the lowest fitness value, because it is the one feeling thenduce secondary ones.
strongest evolutionary pressufi¢ evolves or becomes ex-  The SOC behavior of the system can be seen from the
tinct). Genetic mutations, which occur at random, will distributionP(s) of the numbeis of causally connected mu-
change the fitness of the species at random as well. A changation events, or avalanches. In one dimensi@b) it is
in the fitness of a species will in turn change theal envi-  found thatP(s)~s~" [8], and the most accurate numerical
ronment for the species that are more dependent on it. As @estimate of the exponent is=1.073(3)[16]. The distribu-
consequence those species will also change their fithes®n P(t) of the timet of first return(the interval between
(which is environment dependent two successive mutations of the same spetjedisplays a

It is therefore natural to distinguish between two differentpower law behavior as welR(t) ~t ™~ st with 7q,5=1.58.
mechanisms through which the fitness of a species calihe same observation applies to the distribution of any re-
change: a primary one due to spontaneous mutations, thairn, with an exponent,=0.42. An interesting feature of

1063-651X/96/546)/60535)/$10.00 54 6053 © 1996 The American Physical Society



6054 VENDRUSCOLO, De LOS RIOS, AND BONESI 54

the distributionP(x) of the fitness in the BS model is that

species with a fitness below a threshold vatye-0.667 are 140 ' ‘ ' 3
likely to undergo a rapid extinction, that i®(x)=0 for ;
X<X. [8]. Abovex., P(x) is independent oXk. 1201 : iﬁgﬁﬁﬁdﬁfﬁd A iy
The BS model can be considered as a food chain where o Simulations Model B !
the mutation of a species randomly affects the fitness of its 100 -7~ Fitting Function Model B I
neighbors. It is legitimate to inquire about the motivations
and effects of a different microscopic dynamical rule. We 8o r
introduce a more biologically motivated correlation between P
species, assuming a predator-prey relation as given, e.g., by 6o 1
the well known Lotka-Volterra equatiord7].
If a species increases its fitness, this will affect in differ- 40r
ent ways thdocal environment of those species that most
interact with it. Species that feed on it will find a greater 20 ¢ _ﬂ./"."...n""
number of prey, and this means that they will have better T ,.°
chances to propagate their genes, and their fithess will be RAASSSE SN o et os Y 0
higher than before. Conversely, préyr competitors in gen- Fitness x

era), will find a fitter predator or competitor, thus finding a

more hostile environment: their fitness will be lower than FIG. 1. Fitness probability distributions for model(diamonds
before. The opposite rule applies in the case the species wifind model B(circles; symbols correspond to results from simula-
the lowest fitness value further weakens. Rules of this kindions (1D nearest neighbor modethe fitting functions are propor-
are often found in the biological literatuf@8]. tional to (1-x) ~°(model A, solid ling and to (1-x) ~** (model

Operationally this implies that ik;(t+1)<x;(t), then B: dashed ling

Xj+1(t+1) is extracted if0X;+1(t)] andx;_,(t+1) is ex- , . .
1 ) 10xi1(1)] -1 ) about its robustness by introducing a second mdoheidel

tracted in[x;_4(t),1]. The fitness of specidst 1 which is ) .
predatorover species is decreased randomly and the fitnessB: Whereas the previous model will be referred to as model A

of speciesi—1 which is theprey of species is increased in what follows, with a modified microscopic rule. The pri-
randomly. In the opposite case, wheigt+1)>x(t), then My mutation induces secondary mutations of the nearest
. ’ I I ’

x . (t+1) is extracted ifix. . «(t).1] andx: _«(t+1) is ex- and next to t_he nearest species in such a way that if it in-
trlgclt(ed in%()s)(g 1(?)(3 ed ix;-1(t). 1] andx;— Jise creases its fithess then the twoedators that is, the two
N — .

species on the right side, will increase their fitness too; the
two species on the left will instead have an alternate behav-
1. NUMERICAL SIMULATIONS ior, the nearest one decreasing its fitness, the next nearest one

We perform simulations for a 1D system with the rulesincreasing it. In the opposite case, when spetidscreases

described in Sec. II. The correlated model introduced in thidtS fitness, species+1 andi+2 decrease their fitness as
paper still shows the presence of a threshold in the distribuV€ll: whereas species-1 increases its fitness and species
—2 decreases it. As odd as it may seem, this rule is just the

tion P(x). A major difference with respect to the original BS ' i i
model is that above such a thresh&léix) is not a constant. smplest extension of the above-mentioned predator-prey re-
From mean field calculations, which we will discuss in the ation-
next section, Sec. IV, we expect an algebraic behavior for
P(x) for x—1,

o L 10

P(x)=A(1-x)"¢, ) 0 107 | N

where, from the normalization condition, 10° [ gﬂf 3 ™o
A=(1-a)/2(1—x,)1 . The fitness probability distribution
obtained numerically, shown in Fig. 1, is well represented by
a power law in the entire intervelx.,1]. We estimate
a=0.51(1) anck,=0.751), [note thatP(x.)~2]. This dis-
tribution has a very simple meaning, and implies that the
greater the probability to find a species, the higher is its
fitness. From a scaling analysis of our numerical data, we
obtain the avalanche exponent 1.04(2) (see the inset in

Pfirst(t) ’ Pall(t)

Fig. 2.
For the distributiorPy;(t) of the first return time and for
the distributionP4(t) of any return time we obtain, respec- t
tively, 4= 1.40(2) as shown in Fig. 2, ang,;=0.6Q1).
We note that the relationy, s+ 7= 2 holds within the error FIG. 2. Return time probability distributions for model A. We
as for the BS mode]l19]. numerically obtainrg;s=1.40(2) (lower curve and 74=0.60(1)

The correlated model introduced in this paper belongs to @pper curve The avalanche probability distributid®(s) is shown
different universality class from the BS model. We enquirein the inset ¢=1.04+0.02).
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Simulations of the evolution of this second model showThe mean field approximation turns out to be just an ansatz
again that the fitness distribution exhibits a threshold, andor the form of P(x) at the stationarietyno more time de-
that above it P(x) increases as (2x)~¢ with pendencg
a=0.748(3)(Fig. 1). Again the behavior oP(x) above the N
threshold seems to be a power law, obeying @w The
critical exponentsr, 74,5, andr,, are unchanged within the P(X):il:[l p(Xi). ®
error. We can thus conclude that the two models belong to
the same universality clagsvhich is determined from the Substituting Eq(5) into Eq.(2), integrating oveN—1 of
avalanche and return time exponents, and not fl®®),  theN possiblex; variables between 0 and 1, and integrating

which is much more like an order parameter over the last variable betweernand 1 we obtain an equation
In order to check the previous results, we perform numeriwhich is the same as the one presentefin

cal simulations of the random neighbor version of both mod-
els; that is, the species that undergo secondary mutations are 2 N 2N

chosen at random on the left and right sides of the one af- 1I- o1/ Q0+ =7 Q¥ +3(x=1)=0, (&
fected by a primary mutation. The results are qualitatively in

agreement with those from the nearest neighbor models: thehere Q(x)=f1p(x’)dx’. The solution of this equation is
fitness distribution shows both a threshold and a divergencg]
for x—1, and the divergence exponents agree within the
error with those from simulations for the nearest neighbor

model. The avalanche and return time exponents are all 0. x<3
1.50(1) for both models, in agreement with the random P(x)= 3 1 (7)
neighbor version of the BS model and with the theoretical S x>z

2’ 3

predictions for it,7= 74.5= 7= 5 [9,20]. Actually this does
not come as a surprise, since the random neighbor version of
the models can be formulated in terms of branching pro-
cesses, where the exponegtsome independently out of the p(X)~A(1—x) . ®)
details of the microscopic ruld21].
We thus identify amean fielduniversality class to which  Cancellation of the leading terms on the left-hand side of Eq.
the random neighbor versions of the BS and correlated mods) yields =0 andA=3, consistent with Eq(7).
els all belong. Thenean fieldpredictions forP(x) are quite Starting from Eq/(2), we can derive a mean field solution
in agreement with the real behavior of the system, as thesor our models changing the transition probability
should be if we interpret the fitness distribution as some sorf(j;x’,x).
of order parameter. Model A:three sites are involved in the change, the active
Actually, if this is the case, we expect the mean fieldone and its two nearest neighbors, as in the BS modelisif
approximation to describe the system far from the criticalthe active site, then site- 1 changes in the same direction,
pOint better, which in this case is the fitness threshold. and sitei — 1 in the Opposite one. The Corresponding transi-
tion probability can be written as

In the limit x—1, we try a solution of the form

IV. MEAN FIELD SOLUTION

We give a mean field analysis of the models in order to  T(i;x’,x)=
check the divergence d?(x) for x close to 1. Following
[22], we write a master equation for the problem.

II sx'j—x)

j#iix1

¢9(Xi—><'i)T,,+1
|

X 9(Xi+1_X’i+1)rl O(X"i-1=Xj-1)
.

N
P(x;t+1)= 2,1 Joldx'Pa(i XTI X, X)P(x';t), (2

1
+ 9(X'i_xi)r9(x’i+1_xi+1)
where P(x;t) is the probability of the fitness configuration il

x={Xq, ... Xn} attimet; P,(i;x) is the probability that site ,
i is active given the configuratiox X—l—x'i—l O(Xi—1=X"i—1) |- 9
P.(i:x)=]1 0(X;—X)); (3) The mean field ansatz is again E¢p); proceeding
J#i through the same steps as before we obtain the following

. . . . i ) mean field equation:
andT(i;x’,x) is the transition probability from configuration

x' to configurationx if i is the active site.
Bak and Sneppen modebnly three sites change their (

2 2N
1- —)QN(X)+ ——Q(x)+(x—1)
fitness, taking it at random from a uniform probability distri-

N—1 N—1

bution between 0 and 1. Then the expressionTigrx’,x) is N (1 [2x'=x 1-x ,
—mfo POX')| 7 X" =X) + 77 0(x—X")
T(i;x',X)= S(X"j—X;). 4 B
(o= 11 ax'i=x) @ - ix)jdx =o. (10
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We try a solution of the forn8). After some simple algebra, Model B:this model involves the simultaneous change of
cancellation of the leading terms on the left-hand side of Edfive sites, thel site and its nearest and next to the nearest

(10) givesa= %, in agreement with both true and mean field neighbors according to the above-mentioned rules.
simulations. The transition probability reads

1 1
19(Xi—X'i)T,_+25’(Xi+2—X'i+z)T,_+1 O(Xi 41— X" i41)
I |

T(x "\ x)=| (X" = X;)

1 1 1 1
Xm G(X,i—l_xi—l)m O(Xi—p—X'j_)+ 9(X'i—><i)m 9(X'i+2—Xi+z)m O(X"i 11— Xi+1)

1 1
X———0(X_1—X'i_1)5—0(X"i_o—X;_2) |- 11
1—x i1 ( i—1 i l)X o ( i—2 i 2)} ( )

The mean field approximation leads now to the equation

1 2 v+ = g + 1 A fl / 4X,_X9 ' +3—1_X6 {[1-QNY(x")]dx’
TNo1 Q™ (x) N_lQ(X) (X— )_N—l OP(X) v (x"=x) 1% (Xx=x"){[1-Q" *(x")]dx
2N 1 x' X —
=1 0p(x’) fo QN Y(x")dx"—x' QN (x") 70(x’—x)+1_x, O(x—x")|=0. (12

ent in the description of an ecosystem. We presented numeri-
cal simulations of two related models based on this dynamics
and were able to describe their behavior using a mean field

In the limit x—1, using Eq.(8), we obtaina=$, again in
agreement with both kinds of simulations.
We could further generalize the model, allowiNgsites

to be involved in the mutation event, with a simple extensior@PProach.
of the rule that led from model A to model B. In that case we _1he analysis of these models clearly shows that they are

obtain a=(N—2)/(N—1). The theoretical limit, as is still SOC systems, and that they belong to a different univer-
sality class than the Bak-Sneppen model. This is an impor-

tant result, in fact, the BS model turns out to be sensitive to

Fhanges of the microscopic dynamical rules. As has been

tecently observed, this is not a feature characteristic only of

SOC models based on extremal dynamics, but also of sand-

pile models[13].

Also the fitness probability distributioR(x) is nontrivi-

ally affected by the introduction of correlations among the

species. There are no species with a fitness below a certain

threshold(just as in the BS modgland above it there is a

V. CONCLUSIONS higher probability of .finding spgcies with high f_itness values.
Our model can still be considered a branching process, as

The recent introductiof8] of a very simple model able to it is signaled_by iFs mean field exponents. Moreover the law
reproduce some of the features that seem to be important taysi+ 7a1=2 is still respected.
understand the evolution of life, such pgnctuated equilib-

clearly visible, isa—1~ when N—o, which ensures the
integrability of the fitness probability distribution. Since the
value ofa depends on the number of species involved in th
change, we argue that it is also strongly dependent on th
dimensions of the system.

The mean field approach we used is very powerful in th
determination ofP(x), at least far from the thresholq , as
we could expect from a mean field solution far from the
critical point.
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