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We introduce a model of biological evolution inspired by the Bak and Sneppen~BS! model. Microscopic
dynamical rules are modified with respect to the BS model in order to account for predator-prey and competitor
correlations. We perform numerical simulations of the system and compare them with both a mean field
equation and a mean field simulation. The model is in a different universality class of self-organized critical
behavior than the Bak-Sneppen model, and in addition shows a nontrivial fitness probability distribution.
@S1063-651X~96!02012-0#

PACS number~s!: 64.60.2i

I. INTRODUCTION

Much attention has recently focused upon nonequilibrium
systems displaying self-organized criticality~SOC!, a con-
cept introduced by Bak, Tang, and Wiesenfeld@1#. SOC sys-
tems appear to be widespread in nature, including sandpiles
@1#, earthquakes@2#, creep phenomena@3#, material fractur-
ing @4#, fluid displacement in porous media@5#, interface
growth @6#, and river networks@7#.

Recently Bak and Sneppen~BS! @8,9# introduced a SOC
model describing an ecosystem of interacting species evolv-
ing by mutation and selection, and capable of reproducing
the punctuated equilibrium features@10# of evolution as in-
ferred from observations of fossil records@11#. The signature
of this phenomenon is the power law distribution of evolu-
tionary avalanches, clearly showing that mutations~and ex-
tinction! may be episodic at all scales@10,11#.

It has been debated if changing the microscopic dynami-
cal rules in the sandpile model does or does not change the
SOC universality class of the system@12,13#. It is therefore
interesting to study the robustness of BS-type models when
the interaction rules between species are changed.

In the BS model an ecosystem is represented byN inter-
acting species. Each species is characterized only by its fit-
ness. Such fitness is proportional to the average number of
offsprings that an individual of the species may have in the
given environment@14#. This definition also accounts for the
greater resistance to mutations of the fitter species: mutations
must propagate over a greater number of individuals to be-
come a genetic trait of the species.

The species which is the most likely to mutate is the one
with the lowest fitness value, because it is the one feeling the
strongest evolutionary pressure~it evolves or becomes ex-
tinct!. Genetic mutations, which occur at random, will
change the fitness of the species at random as well. A change
in the fitness of a species will in turn change thelocal envi-
ronment for the species that are more dependent on it. As a
consequence those species will also change their fitness
~which is environment dependent!.

It is therefore natural to distinguish between two different
mechanisms through which the fitness of a species can
change: a primary one due to spontaneous mutations, that

involves the species with the lowest fitness, and a secondary
~or induced! one, due to changes in the environment caused
by the spontaneous mutation of another species. Without the
offspring-related definition of fitness it would be difficult to
understand why and how primary mutations induce second-
ary ones@15#. In our model such observations translate into
microscopic dynamical rules, according to which secondary
mutations are nontrivially correlated to primary ones.

The paper is organized as follows: in Sec. II the Bak-
Sneppen model is reviewed, and a model with correlation
among evolving species is introduced and motivated. In Sec.
III results from numerical simulations of this model are pre-
sented and discussed, and a further model is introduced in
order to check the robustness of its universality class; the
random neighbor version of these models are also numeri-
cally analyzed. In Sec. IV a mean field solution of the three
models~BS and the two correlated models! is proposed and
compared with numerical simulations. In Sec. V conclusions
are drawn.

II. MODEL

In the BS model species are arranged on a lattice, and
interactions are among nearest neighbors. To each species is
assigned a fitness represented by a random numberx with
uniform probability distribution in@0,1#. Evolution takes
place in the following way: at each time step the species with
the minimum fitnessxi is the most likely to mutate. Thus it is
selected, and the value of its fitness is redrawn. Together
with this, the fitnesses of its nearest neighbors also change at
random with the same uniform distribution in@0,1#. The BS
model does not introduce any correlation between primary
and secondary mutations except causality: primary mutations
induce secondary ones.

The SOC behavior of the system can be seen from the
distributionP(s) of the numbers of causally connected mu-
tation events, or avalanches. In one dimension~1D! it is
found thatP(s);s2t @8#, and the most accurate numerical
estimate of the exponent ist.1.073(3) @16#. The distribu-
tion P(t) of the time t of first return ~the interval between
two successive mutations of the same speciesi ) displays a
power law behavior as well,P(t);t2tfirst, with tfirst.1.58.
The same observation applies to the distribution of any re-
turn, with an exponenttall.0.42. An interesting feature of
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the distributionP(x) of the fitness in the BS model is that
species with a fitness below a threshold valuexc.0.667 are
likely to undergo a rapid extinction, that is,P(x)50 for
x,xc @8#. Abovexc , P(x) is independent ofx.

The BS model can be considered as a food chain where
the mutation of a species randomly affects the fitness of its
neighbors. It is legitimate to inquire about the motivations
and effects of a different microscopic dynamical rule. We
introduce a more biologically motivated correlation between
species, assuming a predator-prey relation as given, e.g., by
the well known Lotka-Volterra equations@17#.

If a species increases its fitness, this will affect in differ-
ent ways thelocal environment of those species that most
interact with it. Species that feed on it will find a greater
number of prey, and this means that they will have better
chances to propagate their genes, and their fitness will be
higher than before. Conversely, prey~or competitors in gen-
eral!, will find a fitter predator or competitor, thus finding a
more hostile environment: their fitness will be lower than
before. The opposite rule applies in the case the species with
the lowest fitness value further weakens. Rules of this kind
are often found in the biological literature@18#.

Operationally this implies that ifxi(t11),xi(t), then
xi11(t11) is extracted in@0,xi11(t)# andxi21(t11) is ex-
tracted in@xi21(t),1#. The fitness of speciesi11 which is
predatorover speciesi is decreased randomly and the fitness
of speciesi21 which is theprey of speciesi is increased
randomly. In the opposite case, whenxi(t11).xi(t), then
xi11(t11) is extracted in@xi11(t),1# andxi21(t11) is ex-
tracted in@0,xi21(t)#.

III. NUMERICAL SIMULATIONS

We perform simulations for a 1D system with the rules
described in Sec. II. The correlated model introduced in this
paper still shows the presence of a threshold in the distribu-
tion P(x). A major difference with respect to the original BS
model is that above such a thresholdP(x) is not a constant.
From mean field calculations, which we will discuss in the
next section, Sec. IV, we expect an algebraic behavior for
P(x) for x→1,

P~x!5A~12x!2a, ~1!

where, from the normalization condition,
A5(12a)/2(12xc)

12a. The fitness probability distribution
obtained numerically, shown in Fig. 1, is well represented by
a power law in the entire interval@xc,1#. We estimate
a50.51(1) andxc50.75(1), @note thatP(xc);2#. This dis-
tribution has a very simple meaning, and implies that the
greater the probability to find a species, the higher is its
fitness. From a scaling analysis of our numerical data, we
obtain the avalanche exponentt51.04(2) ~see the inset in
Fig. 2!.

For the distributionPfirst(t) of the first return time and for
the distributionPall(t) of any return time we obtain, respec-
tively, tfirst51.40(2) as shown in Fig. 2, andtall50.60(1).
We note that the relationtfirst1tall52 holds within the error
as for the BS model@19#.

The correlated model introduced in this paper belongs to a
different universality class from the BS model. We enquire

about its robustness by introducing a second model~model
B, whereas the previous model will be referred to as model A
in what follows!, with a modified microscopic rule. The pri-
mary mutation induces secondary mutations of the nearest
and next to the nearest species in such a way that if it in-
creases its fitness then the twopredators, that is, the two
species on the right side, will increase their fitness too; the
two species on the left will instead have an alternate behav-
ior, the nearest one decreasing its fitness, the next nearest one
increasing it. In the opposite case, when speciesi decreases
its fitness, speciesi11 and i12 decrease their fitness as
well, whereas speciesi21 increases its fitness and species
i22 decreases it. As odd as it may seem, this rule is just the
simplest extension of the above-mentioned predator-prey re-
lation.

FIG. 1. Fitness probability distributions for model A~diamonds!
and model B~circles!; symbols correspond to results from simula-
tions ~1D nearest neighbor model!, the fitting functions are propor-
tional to (12x)20.5 ~model A, solid line! and to (12x)20.75 ~model
B, dashed line!.

FIG. 2. Return time probability distributions for model A. We
numerically obtaintfirst51.40(2) ~lower curve! and tall50.60(1)
~upper curve!. The avalanche probability distributionP(s) is shown
in the inset (t51.0460.02).
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Simulations of the evolution of this second model show
again that the fitness distribution exhibits a threshold, and
that above it P(x) increases as (12x)2a with
a50.748(3)~Fig. 1!. Again the behavior ofP(x) above the
threshold seems to be a power law, obeying law~1!. The
critical exponentst, tfirst , andtall are unchanged within the
error. We can thus conclude that the two models belong to
the same universality class@which is determined from the
avalanche and return time exponents, and not fromP(x),
which is much more like an order parameter#.

In order to check the previous results, we perform numeri-
cal simulations of the random neighbor version of both mod-
els; that is, the species that undergo secondary mutations are
chosen at random on the left and right sides of the one af-
fected by a primary mutation. The results are qualitatively in
agreement with those from the nearest neighbor models: the
fitness distribution shows both a threshold and a divergence
for x→1, and the divergence exponents agree within the
error with those from simulations for the nearest neighbor
model. The avalanche and return time exponents are all
1.50(1) for both models, in agreement with the random
neighbor version of the BS model and with the theoretical

predictions for it,t5tfirst5tall5
3
2 @9,20#. Actually this does

not come as a surprise, since the random neighbor version of
the models can be formulated in terms of branching pro-
cesses, where the exponents3

2 come independently out of the
details of the microscopic rules@21#.

We thus identify amean fielduniversality class to which
the random neighbor versions of the BS and correlated mod-
els all belong. Themean fieldpredictions forP(x) are quite
in agreement with the real behavior of the system, as they
should be if we interpret the fitness distribution as some sort
of order parameter.

Actually, if this is the case, we expect the mean field
approximation to describe the system far from the critical
point better, which in this case is the fitness threshold.

IV. MEAN FIELD SOLUTION

We give a mean field analysis of the models in order to
check the divergence ofP(x) for x close to 1. Following
@22#, we write a master equation for the problem.

P~x;t11!5(
i51

N E
0

1

dx8Pa~ i ;x8!T~ i ;x8,x!P~x8;t !, ~2!

whereP(x;t) is the probability of the fitness configuration
x5$x1 , . . . ,xN% at timet; Pa( i ;x) is the probability that site
i is active given the configurationx,

Pa~ i ;x!5)
jÞ i

u~xj2xi !; ~3!

andT( i ;x8,x) is the transition probability from configuration
x8 to configurationx if i is the active site.

Bak and Sneppen model:only three sites change their
fitness, taking it at random from a uniform probability distri-
bution between 0 and 1. Then the expression forT( i ;x8,x) is

T~ i ;x8,x!5 )
jÞ i ,i61

d~x8 j2xj !. ~4!

The mean field approximation turns out to be just an ansatz
for the form ofP(x) at the stationariety~no more time de-
pendence!:

P~x!5)
i51

N

p~xi !. ~5!

Substituting Eq.~5! into Eq.~2!, integrating overN21 of
theN possiblexi variables between 0 and 1, and integrating
over the last variable betweenx and 1 we obtain an equation
which is the same as the one presented in@9#:

S 12
2

N21DQN~x!1
2N

N21
Q~x!13 ~x21!50 , ~6!

whereQ(x)5*x
1p(x8)dx8. The solution of this equation is

@9#

P~x!5H 0, x,
1

3

3

2
, x.

1

3

~7!

In the limit x→1, we try a solution of the form

p~x!;A~12x!2a. ~8!

Cancellation of the leading terms on the left-hand side of Eq.
~6! yieldsa50 andA53

2, consistent with Eq.~7!.
Starting from Eq.~2!, we can derive a mean field solution

for our models changing the transition probability
T( i ;x8,x).

Model A: three sites are involved in the change, the active
one and its two nearest neighbors, as in the BS model. Ifi is
the active site, then sitei11 changes in the same direction,
and sitei21 in the opposite one. The corresponding transi-
tion probability can be written as

T~ i ;x8,x!5F )
jÞ i ,i61

d~x8 j2xj !GFu~xi2x8 i !
1

12x8 i11

3u~xi112x8 i11!
1

x8 i21
u~x8 i212xi21!

1u~x8 i2xi !
1

x8 i11
u~x8 i112xi11!

3
1

12x8 i21
u~xi212x8 i21!G . ~9!

The mean field ansatz is again Eq.~5!; proceeding
through the same steps as before we obtain the following
mean field equation:

S 12
2

N21DQN~x!1
2N

N21
Q~x!1~x21!

2
N

N21E0
1

p~x8!F2x82x

x8
u~x82x!1

12x

12x8
u~x2x8!G

3@12QN21~x8!#dx850. ~10!
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We try a solution of the form~8!. After some simple algebra,
cancellation of the leading terms on the left-hand side of Eq.

~10! givesa5 1
2 , in agreement with both true and mean field

simulations.

Model B: this model involves the simultaneous change of
five sites, thei site and its nearest and next to the nearest
neighbors according to the above-mentioned rules.

The transition probability reads

T~ i ;x8,x!5F )
jÞ i ,i61,i62

d~x8 j2xj !GFu~xi2x8 i !
1

12x8 i12
u~xi122x8 i12!

1

12x8 i11
u~xi112x8 i11!

3
1

x8 i21
u~x8 i212xi21!

1

12x8 i22
u~xi222x8 i22!1u~x8 i2xi !

1

x8 i12
u~x8 i122xi12!

1

x8 i11
u~x8 i112xi11!

3
1

12x8 i21
u~xi212x8 i21!

1

x8 i22
u~x8 i222xi22!G . ~11!

The mean field approximation leads now to the equation

S 12
4

N21DQN~x!1
4N

N21
Q~x!1~x21!2

N

N21E0
1

p~x8!F4x82x

x8
u~x82x!13

12x

12x8
u~x2x8!G @12QN21~x8!#dx8

1
2N

N21E0
1

p~x8!F E
0

x8
QN21~x9!dx92x8QN21~x8!GF xx8 u~x82x!1

12x

12x8
u~x2x8!G50. ~12!

In the limit x→1, using Eq.~8!, we obtaina5 3
4 , again in

agreement with both kinds of simulations.
We could further generalize the model, allowingN sites

to be involved in the mutation event, with a simple extension
of the rule that led from model A to model B. In that case we
obtain a5(N22)/(N21). The theoretical limit, as is
clearly visible, isa→12 when N→`, which ensures the
integrability of the fitness probability distribution. Since the
value ofa depends on the number of species involved in the
change, we argue that it is also strongly dependent on the
dimensions of the system.

The mean field approach we used is very powerful in the
determination ofP(x), at least far from the thresholdxc , as
we could expect from a mean field solution far from the
critical point.

V. CONCLUSIONS

The recent introduction@8# of a very simple model able to
reproduce some of the features that seem to be important to
understand the evolution of life, such aspunctuated equilib-
rium @10,11#, stimulated research aimed at both better under-
standing the properties of the model itself@20# and introduc-
ing more realistic features@23#. We adopted a definition of
fitness that allows us to introduce apredator-preycorrelation
among the species, which we believe is an essential ingredi-

ent in the description of an ecosystem. We presented numeri-
cal simulations of two related models based on this dynamics
and were able to describe their behavior using a mean field
approach.

The analysis of these models clearly shows that they are
still SOC systems, and that they belong to a different univer-
sality class than the Bak-Sneppen model. This is an impor-
tant result, in fact, the BS model turns out to be sensitive to
changes of the microscopic dynamical rules. As has been
recently observed, this is not a feature characteristic only of
SOC models based on extremal dynamics, but also of sand-
pile models@13#.

Also the fitness probability distributionP(x) is nontrivi-
ally affected by the introduction of correlations among the
species. There are no species with a fitness below a certain
threshold~just as in the BS model!, and above it there is a
higher probability of finding species with high fitness values.

Our model can still be considered a branching process, as
it is signaled by its mean field exponents. Moreover the law
tfirst1tall52 is still respected.
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